459,150 research outputs found

    Coherent states, displaced number states and Laguerre polynomial states for su(1,1) Lie algebra

    Get PDF
    The ladder operator formalism of a general quantum state for su(1,1) Lie algebra is obtained. The state bears the generally deformed oscillator algebraic structure. It is found that the Perelomov's coherent state is a su(1,1) nonlinear coherent state. The expansion and the exponential form of the nonlinear coherent state are given. We obtain the matrix elements of the su(1,1) displacement operator in terms of the hypergeometric functions and the expansions of the displaced number states and Laguerre polynomial states are followed. Finally some interesting su(1,1) optical systems are discussed.Comment: 16 pages, no figures, accepted by Int. J. Mod. Phy.

    A synchronous binary array divider

    Get PDF
    An asynchronous binary divider formed of an array of identical logic cells is described. Each cell includes a single bit binary subtractor and a selection gate. The array is connected to divisor, dividend, quotient and remainder registers. Divisor and dividend numbers are read into the divisor and dividend registers, respectively. The array of identical logic cells performs the division in parallel asynchronously and places the results of the division in the quotient and remainder registers for subsequent readout

    Array multiplier

    Get PDF
    Digital array multiplier consisting of any number of identical digital adder cells in a repetitive planar configuration functions as a modular multiplier for use in computer applications of airborne vehicles. The modular multiplier utilizes large scale integration and metal oxide semiconductors

    Magnetic spin excitations in diluted ferromagnetic systems: the case of Ga1−xMnxAsGa_{1-x}Mn_{x}As

    Full text link
    We propose a theory which allow to calculate the magnetic excitation spectrum in diluted ferromagnetic systems. The approach is rather general and based on the Self-Consistent local Random Phase Approximation in which disorder (dilution) and thermal fluctuations are properly treated. To illustrate its reliability and accuracy we calculate the magnetic excitation in the diluted III-V magnetic semiconductor Ga1−xMnxAsGa_{1-x}Mn_{x}As. It is shown that dilution has a drastic effect on the excitation spectrum, indeed well defined magnon excitations exist only in a small region of the Brillouin zone centered around the Γ\Gamma point. We also calculate the spin stiffness in optimally annealed sample as a function of Mn2+Mn^{2+} concentration. A comparison to available measurements is done. We find a very good agreement for both the Curie temperature and the spin stiffness measured in well annealed samples and provide a plausible explanation for the very small values measured in as grown samples.Comment: The manuscript has been modified, 4 figures are included. Accepted for publication in Eur. Phys. Let

    sigma and f_0(980) substructures from gamma-gamma to pi-pi, J/psi, phi radiative and D_s semi-leptonic decays

    Full text link
    Using an improved "analytic K-matrix model", we reconsider the extraction of the sigma/f_0(600) and f_0(980) gamma-gamma widths from gamma-gamma to pi-pi scatterings data of Crystal Ball and Belle. Our main results are summarized in Tables 3 and 4. The averaged sigma "direct width" to gamma-gamma is 0.16(3) keV which confirms a previous result of [1] and which does neither favour a large four-quark (diquark-antidiquark) nor a molecule nor a pure \bar qq component. The "direct width" of the f_0(980) of 0.28(2) keV is much larger than the four-quark expectation but can be compatible with a \bar ss or gluonium component. We also found that the rescattering part of the amplitude is relatively large indicating an important contribution of the meson loops in the determination of the gamma-gamma total widths. This is mainly due to the large couplings of the sigma and f_0(980) to pi-pi and/or \bar KK, which can also be due to a light scalar gluonium with large OZI violating couplings but not necessary to a four-quark or molecule state. Our average results for the total (direct+rescattering) gamma-gamma widths: Gamma_sigma^{tot}= 3.08(82) keV, Gamma_{f_0}^{tot}= 0.16(1) keV} are comparable with the ones from dispersion relations and PDG values. Using the parameters from QCD spectral sum rules, we complete our analysis by showing that the production rates of unmixed scalar gluonia sigma_B(1) and G (1.5-1.6) agree with the data from J/\psi, phi radiative and D_s semi-leptonic decays.Comment: 11 pages, 6 figures (1 more figure added in Fig 6), 4 tables : version appeared on-line in doi:10.1016/j.physletb.2010.12.00

    Oxygen Isotope Effect on the Spin State Transition in (Pr0.7_{0.7}Sm0.3_{0.3})0.7_{0.7}Ca0.3_{0.3}CoO3{_3}

    Full text link
    Oxygen isotope substitution is performed in the perovskite cobalt oxide (Pr0.7_{0.7}Sm0.3_{0.3})0.7_{0.7}Ca0.3_{0.3}CoO3{_3} which shows a sharp spin state transition from the intermediate spin (IS) state to the low spin (LS) state at a certain temperature. The transition temperature of the spin state up-shifts with the substitution of 16O^{16}O by 18^{18}O from the resistivity and magnetic susceptibility measurements. The up-shift value is 6.8 K and an oxygen isotope exponent (αS\alpha_S) is about -0.8. The large oxygen isotope effect indicates strong electron-phonon coupling in this material. The substitution of 16^{16}O by 18^{18}O leads to a decrease in the frequency of phonon and an increase in the effective mass of electron (mm∗^\ast), so that the bandwidth W is decreased and the energy difference between the different spin states is increased. This is the reason why the TsT_s is shifted to high temperature with oxygen isotopic exchange.Comment: 4 pages, 3 figure

    Gravitino dark matter from gluino late decay in split supersymmetry

    Full text link
    In split-supersymmetry (split-SUSY), gluino is a metastable particle and thus can freeze out in the early universe. The late decay of such a long-life gluino into the lightest supersymmetric particle (LSP) may provide much of the cosmic dark matter content. In this work, assuming the LSP is gravitino produced from the late decay of the metastable gluino, we examine the WMAP dark matter constraints on the gluino mass. We find that to provide the full abundance of dark matter, the gluino must be heavier than about 14 TeV and thus not accessible at the CERN Large Hadron Collider (LHC).Comment: discussions added (version in PRD
    • …
    corecore